For many years, my opinion of nuclear power has been one of an uneasy truce: I've not been 100% comfortable with it, but accepted it because of the potential to generate a lot of power relatively pollution-free.
In the wake of the accident at the Fukushima power plant, I'm rediscovering some things I kind of knew before but hadn't fully appreciated:
Historically speaking, far more people have been killed by fossil fuel power than nuclear power. This is a fact.
But that's not because nuclear power is inherently safer. On the contrary: nuclear power has a good safety record (so far) because it is so extremely dangerous that we entomb reactors with insanely large containment structures to keep the stuff away from us even in an unthinkable disaster. Were we to build similar containment and waste-handling systems for coal-fired power plants, pollution and global warming would be non-issues.
We don't do that with coal and oil because we don't have to.
And if a containment structure is ever catastrophically breached (an event which hasn't happened yet--the Chernobyl reactor had no containment), it would likely render hundreds of square miles uninhabitable for centuries. Nothing else made by humans has that capacity.
Even after decades of nuclear power, we still haven't figured out what to do with the spent fuel. Fukushima shows that in an accident the spent fuel can be almost as dangerous as the reactor itself, in its capacity to contaminate the surroundings and prevent emergency workers from fixing problems.
Here in the U.S., spent nuclear fuel is basically stockpiled at the power plant waiting for the (hypothetical) day when there's some way to recycle or dispose of it. At the Prairie Island plant here in Minnesota, they've actually run out of storage space and have had to build new storage casks. It's safe to assume that these spent fuel casks are considerably more vulnerable than the primary containment around the reactor.
The nuclear accidents at Chernobyl and Three Mile Island happened because of internal problems, not because of a natural disaster. Fukushima, on the other hand, was caused by a combination of a magnitude-9 earthquake and a massive tsunami--an event the power plant was not designed to survive.
Nuclear reactors are engineered to withstand the most catastrophic natural disaster expected at their site. What that means in practice is that a natural disaster big enough to damage a nuclear power plant will be bigger than anything anyone expects. Normally simple things like transportation may be difficult or nearly impossible, local emergency services may be wiped out, and it could take days to get even the most basic resources to fix the problem.
If bringing a nuclear power plant under control requires something (supplies, people, expertise) which doesn't exist at the site itself, you might not be able to get it at all.
One argument by nuclear advocates post-Fukushima has been that the Fukushima reactor and containment was an older design with known deficiencies. New plants, they argue, would never be as vulnerable.
Unfortunately, older reactors continue to be used, even decades beyond their original design lifetime. Given the cost of decommissioning an old reactor and building a new one, power plant owners have an enormous incentive to keep the old reactors running as long as possible.
It's hard to know if the margin of safety in older nuclear plants has eroded (it may take another disaster to know for sure), but it is clear that they are not being replaced by newer designs nearly as quickly as the original designers had intended.
Apple refreshed its laptop line today, and the big new feature is the "Thunderbolt" port, aka The Mordor Plug ("....one plug to rule them all....").
Lots of people are really excited about this, but I noticed an odd design choice. Take a look at the symbol Apple is using for the Thunderbolt interface, the lightning bolt with an arrow.
Now take a look at this Google Image search. Striking resemblance, don't you think?
I don't know how eager I am to plug an expensive peripheral into a port marked with a prominent "DANGER HIGH VOLTAGE" symbol.
It seems that Apple is trying to rebrand a universally understood symbol meaning "Danger! Don't touch this or plug anything into it unless you really know what you're doing" to mean "You can plug anything into me and it will be really fast!"
What could possibly go wrong?
Based on a purely random set of observations over my lifetime, I've noticed that houses more than about 100 years old (built before 1910 or so) usually have an attic which is fairly accessible for storage. Houses less than 60 years old (built after 1950 or so) usually have attics which are difficult to get into, or even completely sealed from the living spaces.
My own home, built in 1984, has at least three distinct attic spaces over different parts of the house, and only one of the three has any way to get in at all (without cutting through a wall or ceiling). Getting into the one accessible space requires carrying a large stepladder up to a closet on the top floor, lifting a drywall panel out of the way, and shimmying through a small hole--not at all practical for storage.
I find this a little mysterious. Attics are terribly useful things: they don't take up any living space but can provide an enormous amount of storage (think of all the billions spent on mini-storage); an accessible attic makes it much easier to inspect the condition of the insulation and look for roof leaks (and every roof, given enough time, will eventually leak); and attics are almost as handy as drop ceilings when trying to pull network cables.
So why doesn't the modern American house make it easy to get into the attic, the way our grandparents' houses did? I have some theories:
My guess is that the answer is a combination of 1 and 2, with maybe a little of 3 and 4 thrown in. I really don't know, though, and my attempts to use Google-fu to find the reason came up blank.
So for now this is just a mystery. But if I ever build my own home, I will insist that it come with a proper staircase to an attic where I can keep all my stuff.
I finally got around to putting the current weather back in the blog. This was the one major cleanup from when I switched to Drupal almost two years ago.
It isn't especially elegant: at home I have a Mac Mini running Lightsoft Weather Center; this downloads the current weather from my Davis Vantage Pro weather station. Every 15 minutes, it updates an HTML template and FTPs it as a static file to my web hosting provider. This static HTML page is included on every page of the site through an iframe.
There are also some history graphs which can be accessed by clicking the "Weather in the Frozen North" link; those are also updated every 15 minutes.
I was forced to abandon the Davis WeatherLink software because the Mac version was simply pathetic--it has not been well maintained, and ran as a Java application which seemed to be very brittle. Fortunately, there are now several superior alternatives for weather station software on the Mac which have more features, are easier to set up, and produce nicer-looking output.
Facebook, it's not you, it's me.
I tried to make our relationship work, I really did. At first I resisted--I'm not the kind of nerd who falls for every pretty Web 2.0 app--but when it seemed like everyone I knew was talking about you (even my own mother in law), I gave in.
We had fun together, at first. Reconnecting with old friends, seeing who else was hanging out. After a while, though, our relationship began to change. You didn't communicate with me the way you used to: instead of fun little updates, it seemed like all I got was messages about how many sheep someone raised in FarmVille.
I understand that you have needs too, but our relationship can't be a one-way street. If you want to monetize me, that's fine, but our relationship needs to be about more than just that.
For a while I sort of drifted away, but then I started suspecting that you had a darker side when I learned how many of our shared secrets you didn't really keep secret. Whatever trust and respect I had was gone when I learned that those games my friends were playing demanded a price: not just my friends' privacy, but mine too. Suddenly the sheep seemed more than annoying, almost sinister.
So I tried to leave you. For months I didn't log on, but eventually, and against my better judgment, I decided to give you one more try.
This time, I vowed, I would be careful and give you a fair shake. I would block all the useless applications, to protect both my time and my privacy. I would check everyone's updates regularly and comment where appropriate.
It didn't work.
The harsh reality is that I've been spending as much time blocking applications (you don't make it as easy as it should be) as communicating with people I care about. Of all my "friends," only a handful actually post updates, and those who do update post way too often (I care about these people, but not that much).
So in the end, Facebook, this is goodbye. I've invested too much energy in our relationship and gotten too little in return, and I've finally realized that to you I was never more than one more consumer profile to market to. I deleted my account today--though I have my doubts that you'll respect that. Something tells me you don't really believe our relationship is over.
Apple did not invent graphical user interface. Nor did it invent the digital music player, smartphone, or tablet computer. Apple did take each of these products, do it better than anyone else, and (for a time at least) own the market.
In each case, a large part of Apple's contribution was not a killer feature or innovation, but taking existing elements and finding a combination of elements uniquely appealing to customers.
In each case, this meant omitting some features which every other product included, and which most observers believed to be must-have.
In each case, competitors and industry pundits mocked Apple's products and predicted failure.
In each case, when customers actually tried the products, the missing features turned out to be less important than the overall experience.
Normally when a company launches a new product into a new market, it makes an effort to include all the key features. Without hitting the "checklist features" it can be difficult to get prospective customers to even try the product, and the product is often doomed before it even gets a chance.
Apple's unique talent, and the true nature of Steve Jobs' Reality Distortion Field, is in getting prospective customers to give a new product a try, even when it seems to be missing key features.
Apple's products, at least since the return of Steve Jobs, have been an oasis of quality hardware and software in the sea of cheap, ugly, and crash-prone products that is the computing industry. As much as I like Apple and my iPhone, however, I would like the option to buy my next phone from a different company and not feel like I'm settling for second-best.
So far things are not looking good. The Palm Pre had outstanding software, but it never had enough backing from major carriers. As a result, both the Pre and Palm itself, are for all intents and purposes no more.
Android was also promising at first, and it still is promising in the abstract. Unfortunately, nearly all the actual Android phones on the market come with some combination of a lack of software upgradability, crippled features, obnoxious bloatware, and unhelpful user interface overlays. The main exception seems to be Google's own Nexus One, which lacked the marketing support of major carriers and is for all intents and purposes no more. Though it is technically possible to hack your Android phone or buy a new Nexus One, it's not reasonable to expect a typical consumer to go through the effort involved.
And while Android phones in aggregate are outselling iPhones, those sales are spread across hundreds of different devices from dozens of manufacturers. Given the wide variety of hardware, OS versions, and customized software commercial Android phones are sold with, it begs the question of whether Android is even a single platform.
Why is that after over three years since the original iPhone introduction no other manufacturer has been able to match Apple's combination of commercial success and high quality design?
Or, as an acquaintance recently said as he was showing off his beautiful new Droid phone, "It's great but let's face it: we all just want iPhones."
In order to successfully bring a mobile phone to market, three different elements must come together: the hardware, the software, and the service. That means that up to three different companies are involved in creating the customer experience, though often the hardware and software are from the same company.
Of these, the service is the hardest to differentiate, since consumers generally notice the service only when it fails: when calls drop, when the bill is wrong, etc. When everything is working properly the mobile phone service is like oxygen in the air, invisibly supporting the customer's daily activities.
However, the service provider also owns the customer relationship, since the carrier sells the customer the phone (in most cases), provides customer support, and sends the customer the monthly bill. In most cases that monthly bill is not only paying for the actual cost of delivering mobile phone service, but also most of the cost of the phone itself.
So the mobile phone companies--Verizon, AT&T, Sprint, T-Mobile, and others--use their customer control to force handset makers to make handsets the carriers want, which might or might not be the handsets which customers want.
At its most benign, this results in the carriers' logo being featured more prominently than the manufacturer's logo on most mobile phones. More importantly, phones are often shipped with important features (like data tethering) crippled or disabled to help the carriers sell more expensive services, and useless applications and overlays added which the carrier uses to "differentiate" its handsets (for example, Sprint's infamous Nascar App). It's also hard for a handset maker to innovate in ways which require the carrier's cooperation, since the handset company has very little power in the relationship and phone companies (as a rule) don't like changing their networks if they don't have to.
The iPhone, on the other hand, seems to exist entirely outside this world. Every iPhone ships with the same interface and user software (no carrier-specific apps or overlays), carriers have updated their networks specifically to support the iPhone's Visual Voicemail feature (Apple did not invent the graphical interface for voicemail, but only Apple convinced a carrier to support it), and Apple doesn't even include the carrier's logo anywhere on the phone. An iPhone from anywhere in the world is essentially the same product, with the same branding, features, applications, and interface.
[The one exception is data tethering, which is enabled in most markets but costs extra under AT&T. In My Humble Opinion this is obnoxious but at least understandable, given that the usage profiles of a smartphone and a wireless modem--which it what a tethered phone is--are very different.]
Uniquely, in the power relationship between carriers and handset makers, somehow Apple has come out on top where every other mobile device manufacturer has had to kowtow to the phone companies.
I'm starting to believe that the iPhone and its success is due to a set of circumstances which make it unlikely any other company will be able to repeat Apple's feat.
At the time Apple was developing the iPhone and looking for a carrier partner, AT&T was still working through the aftereffects of a series of mergers and rebrandings which had, in the course of only a couple of years, confusingly merged Cingular and AT&T Wireless, killed the AT&T Wireless name, then returned the AT&T name and eliminated the Cingular brand. Network and customer service integration was also rocky, and the company needed something unique to offer customers.
Apple is notoriously finicky about its products, and other carriers (notably Verizon) wouldn't give Apple the degree of control Apple wanted. But for AT&T, this was exactly what it needed: Apple was (thanks to the iPod) a powerful brand associated with hip, cutting-edge gadgets, and could be counted on to produce something special. AT&T would give up control of the handset and the customer relationship, but in return would get a phone no other carrier (in the U.S.) could offer.
Only Apple could make this deal, since only Apple had the Apple brand. Had Palm, RIMM, Motorola, Nokia, HTC, or any of the other handset companies built a similar product, it never would have gotten the carrier support required to succeed without the branding, crapware, crippling, and overlays which plague those same companies' products today. The fact that Apple is still the only handset maker to succeed without compromising its product to get access to the customer just proves the point.
It took the unique combination of a powerful brand, a groundbreaking product, and a desperate phone company to break through the carriers' reflexive need to be front-and-center with the customer. These circumstances aren't likely to happen again in the near future, and as a result, Apple's position is likely to remain safe for some time to come.
My iPad 3G arrived on Friday, so after watching other people's shiny new toys I finally got to use my own.
The main use we're planning at my company (or excuse, if you prefer) is to use the iPad as a demonstration device when we exhibit at trade shows. Right now we ship a large iMac to set up in our booth in order to show off our web-based reporting tools. The iMac is a good platform for this, since it gives us an attractive, large display which helps draw people into the booth but doesn't detract from what we're trying to show off.
The iMac has it's downsides, though: it costs over $100 to ship and insure (even ground) each way; the padded shipping crate is heavy and unwieldy; and since we only have one, we can only do one demo at a time, meaning that at busy times we have a lot of people crowded around the one scree
The iPad seems like the perfect alternative. It costs nothing to ship since several will fit into a briefcase to carry onto a flight, it's easy to carry on and off a trade show floor, and we can have several in the booth so we can give multiple one-on-one demonstrations at a tim
After receiving the iPad Friday, I loaded it with a variety of productivity software and tools (mainly Apple's iWork suite, Omnigraffle, and OmniGraphSketcher) on the theory that we may want to actually use the iPads when we're not at a trade show to do real work.
Thursday afternoon, before my 3G model arrived, I was at a technology committee meeting for a local school. Since the non-faculty members of the committee are all technophiles like myself, I wasn't surprised when the pre-meeting discussion was about the iPad. Both of the other non-faculty members had brought a few (non-3G) iPads into their organizations to evaluate, and both had essentially the same conclusion: the iPad is more useful as a business and technology tool than they had expected.
After playing with mine for the weekend, I have to agree. The productivity applications on the iPad are necessarily more limited, but for basic tasks they are significantly faster and more natural to use than the desktop equivalent. The small form-factor, touch interface, and instant-on-always-available quality of the iPad allow the machine to get out of the way of whatever task may be at hand. The fact is that 98% of business tasks do not require advanced features, so it becomes natural to just grab for the pad rather than open the laptop.
A case in point is the OmnigGraphSketcher application. I evaluated this on the desktop a while ago as a charting package and came away unimpressed. The concept is that rather than start with numerical data in a table like every other graphing program, you draw the graph you want freehand and the program makes it look pretty. This didn't work (for me) since I've always found drawing freehand with a mouse to be unnatural, clumsy and imprecise, and I couldn't see why you would want to get away from numerical input data.
On the iPad, however, OmniGraphSketcher becomes and entirely different experience. Sketching a chart with a touch screen is about the most natural thing you can do, and the program takes what you draw freehand and makes it look pretty and professional. The experience is like using a magic whiteboard which takes your rough ideas and turns them into something which looks like a professional graphic artist created it.
There are some surprising glitches and limitations (which I fully expect will be addressed in a future software update). For me at least, the lack of Flash and multitasking are not problems at al
However, long popup menus render in a way which doesn't look scrollable, meaning that items at the top or bottom of a list can get lost. For such a polished user interface, this usability mistake is surprising.
The lack of printing capability and the clumsy mechanisms for sharing and synchronizing files limit the iPad as a serious workhorse. Right now about the only way to move files on and off the iPad for most programs is through e-mail which, while functional for small files, is really not acceptable for big documents.
I also discovered that while most websites work very well on the iPad, some advanced AJAXy things don't work at all. The touch interface has no way to hover the mouse pointer over things, and there is no way (yet) to do drag-and-drop operations on the touch screen (the drag motion of the fingers is interpreted as a scrolling action and doesn't get padded to Javascript).
I'm typing this article entirely on the on screen keyboard (works surprisingly well) but the fancy WYSIWYG text editor I use on this blog does not work on the iPad at all (so after typing this, I will be cleaning up the formatting from my laptop).
Stray taps also seem to be a problem, and when I type too fast I seem to get a little sloppy and occasionally hit the screen outside the keyboard, moving the insertion point in my text and wreaking havoc on what I'm trying to type.
On the whole, these are minor complaints, and I fully expect they will be fixed in months not years. I can definitely see a day when the iPad or it's successor becomes my primary computing device, with the laptop or desktop only hauled out for particularly demanding tasks.
Last week I scouted four possible building sites for She Who Puts Up With Me's cousin to place a primitive one-room cabin on our property at Bogus Lake. I found some places on the property I didn't know existed, and while none of the spots is perfect, they all have a lot to offer.
This site is near the access road and overlooks a massive beaver dam. 15" logs litter the area where beavers cut down large trees but only used the branches.
Pros:
Cons:
The highest point on our property is at the top of the highest hill for a considerable distance in any direction, though not all the hilltop is on our property. This site has a steep dropoff in one direction, giving a spectacular view without clearing any trees. Were it not for the trees, there would be a 270-degree panorama affording views of Lake Superior, the BWCA, and possibly Bogus Lake as a bonus.
Pros:
Cons:
In my hiking I discovered a small knob above Bogus Lake which (according to my GPS) is just 100' inside the property line. A cabin built here would have the feeling of being perched above a small alpine lake, because that's about what it would be.
Pros:
Cons:
Continuing along the hillside past Site 2, there's a broad expanse of mature (100 years old) sugar maple forest. The ground has just enough slope to keep it dry, and the thin underbrush made for easy hiking. Signs of recent moose activity were everywhere. A cabin here would have the feeling of being isolated deep in the woods.
Pros:
Cons:
In the Northeastern tip of Minnesota, just a few miles from the Canadian border, there's a lake so small it's Bogus. That's where I have my own piece of the northwoods, a conifer and maple forest overlooking Lake Superior.
At 80 acres, Bogus Lake is certainly small, but it's a lot bigger than some of the drainage ponds they used to call "lakes" when I lived in central Illinois. It's also not the only Bogus Lake in Minnesota--there's another one near Lake Itasca in the central part of the state. There are also Bogus Lakes in Wisconsin, Oregon, and Ontario, among other places.
I bought a parcel of undeveloped land on Bogus Lake in 1991, when the combination of a recession, the collapse of the logging industry in that area, and the fact that Grand Marais hadn't been discovered as a tourist destination conspired to drive land prices to absurdly low levels. I was in college at the time, and scraped together enough money to buy the 158 acre lot. At the time it had been for sale for something like two years with barely any interested buyers.
The land lies at the top of a ridge 1,200 feet above Lake Superior. When the leaves are off the trees you can see the big lake from a number of places around the property. There's a massive beaver pond and stream, and many signs of moose activity.
In my college days, I made a couple of attempts at cabin building with the idea of having a warm place to stay. Unfortunately my ambition ran ahead of my time and abilities--one of the two structures is slowly collapsing, and the other has been in a permanently unfinished state for over 15 years. When I moved out of state for graduate school my visits to Bogus Lake slowed to the barest trickle: first because it was too far, then because I was too busy, and then because it was too hard to camp with the kids.
This year I've been thinking more and more about my place at Bogus Lake. I think this was really sparked by the cousin of She Who Puts Up With Me, who aspires to be the next Thoreau. Over the winter he asked us if he could build a small one-room cabin on our property, and we agreed (it's not like things are getting crowded up there).
The cabin is scheduled to be built starting around the end of May, and this past week I spent three days in Grand Marais hiking all around the property scouting sites. I went further into the property and saw more of it than I ever have in the past, and this has rekindled my enthusiasm for eventually building a vacation (or even retirement) home up there.
I've also hired a surveyor to locate and mark the boundary of the property. Only about 1/3 of the property line has ever been surveyed, so our current understanding of where our land ends is based on taking measurements off topographic maps and punching them into a handheld GPS. This could easily be off by 100 feet or more.
Within the property, there are places where (if it weren't for the trees) you could get stunning 270-degree vistas of Lake Superior and the surrounding hills. There are other places which feel like the shore of a remote alpine lake, and places where the horizon only extends to the first row of trees. When we build a home at Bogus Lake, we will have our pick of places.
In the meanwhile, I've decided that it's high time to start getting up there more often.
When the original iPhone came out, my first reaction was, "Cool, I want one!"
She Who Puts Up With Me was less enthusiastic, viewing it as "an expensive toy and we already have two perfectly good phones so why do we need this?"
Despite these objections, my old phone just happened to fall apart within days of the availability of the iPhone (no, really, it was an old Treo and the screws kept falling out and it was being held together with one screw and a piece of Scotch tape, and besides the web browser was a piece of junk and I couldn't get it to work right with my e-mail anyway). So it came to pass that just a week after they went on sale, I came home with two brand-new iPhones.
For the record, my wife has become a true believer and now plans to upgrade her iPhone (still the first generation one, now starting to lose its battery life) this summer when the next generation comes out.
So it should come as no surprise that when the iPad was announced, my first reaction was, "Cool, I want one!"
She Who Puts Up With Me responded with "it's an expensive toy and we already have five perfectly good computers so why do we need this?"
Let's not fool ourselves. I've basically not grown up past the "give me the shiny new toy!" stage which for most people ends at about three years old. That makes me the perfect target consumer for an iPad--I just needed to find some way to distract the rational side of my brain from the price tag. The mental equivalent of pointing off in the distance and and shouting "Look over there! What in the world can that be?"
My excuse is that the iPad looks like the perfect gizmo for a tradeshow booth where you need to do one-on-one demonstrations of a web-based application. It's very portable (saves shipping), you can have several of them in the booth, prospective customers can hold it up and touch the application (better than huddling around a mouse and screen), and the novelty value alone will bring people into the booth.
It just so happens that my company's reporting system is web-based, and we spend a lot of our time when exhibiting at tradeshows doing one-on-one demos.
So I've ordered an iPad--of course this is to "evaluate its suitability for use in our tradeshow demos," but we all know the truth.
In the past few months, the Conventional Economic Wisdom (CEW) has swung from a recession of indefinite duration (but always lasting at least 18 months longer) to a jobless recovery. This can only mean one thing: job growth in the United States is about to explode.
This is not based on any particular insight I have, just the observation that job growth is a lagging economic indicator, and the CEW is always looking in the rear-view mirror. The CEW saw continued growth in the first half of 2008 after the recession had already started, hard times as far as the eye could see in the first half of 2009 as the economy bottomed out, and now that growth is returning the CEW insists that it isn't really at least not for most people.
So I will once again stake out my contrarian position and claim that the pessimistic CEW is a leading indicator for imminent job growth.
APPENDIX: My contrarianism has actually served me reasonably well. Looking through my blog archives, I find that at the end of 2005 I wrote that there would probably be a recession starting by the end of 2007 (true, but barely). At the beginning of 2008 I wrote that we were already in a recession (before the CEW acknowledged the fact) but that we were close to the bottom (sadly, too optimistic). Then at the beginning of 2009, as the economy was bottoming but the CEW saw nothing but pessimism, I started looking for signs of hope. This time around I could be completely off-base or way too early, but by golly I'm going to stick to my contrarian optimism until I'm right.
Instead of Tony the Tiger in the tank, how about Aunt Jemima? Would it be possible to use a simple sugar syrup (about 50% water and 50% sugar) as a vehicle fuel?
One of the biggest challenges of large-scale use of biofuels is that refining the fuel is often extremely energy-intensive. Most products of biological processes are water-soluable, since biological process all take place in a water medium. Unfortunately, however, most current internal combustion engines can't run on a fuel+water mixture, so it is necessary to remove the water from the fuel as part of the process of refining the biofuel. This can take almost as much energy as is present in the fuel to begin with.
(Note that oil-based biofuels, like biodiesel, don't have this problem since the oil will naturally separate from the water. However, oil-producing plants tend to have a much lower yield of oil than sugar-producing plants have of sugar.)
So if you can build an engine capable of running efficiently on a fuel+water mixture, you can get a lot more biofuel for the amount of energy you put into growing and refining the fuel. In addition to making the biofuel much more sustainable, this also makes the economics of producing biofuels much more compelling since it's no longer necessary to buy massive amounts of fuel to separate the fuel from the water.
Once you've decided to use a fuel+water mixture, sugar becomes a much more compelling fuel choice than ethanol. Ethanol production always begins by fermenting sugar anyway (even cellulose-derived ethanol, since that uses enzymes to break the cellulose down into simple sugars), and sugar has a significantly higher energy density than ethanol. Sugar is a lot cheaper, too.
The only reasons to prefer ethanol over sugar are (a) ethanol can be used in existing engines with little or no modification, and (b) ethanol is a liquid, and sugar is a solid, and solid fuels are really hard to deal with in an internal combustion engine. But if we're designing a new engine specifically to run on a fuel+water mixture, we've already decided that compatibility with existing engines doesn't matter; and a sugar syrup is a liquid.
Sugar syrup has some other advantages: it's readily available from a wide variety of sources, it has a low freezing point and high boiling point, and the desired 50% mixture can be achieved fairly readily by removing water from certain plant saps (no need to dry it all the way to granulated sugar). You can even make the stuff at home, cheaply and easily.
I don't know if a syrup-powered engine is possible, but I think it would be. The challenge is that before the fuel can burn, the water has to boil completely inside the cylinder, since the water boils (even at high pressure) at a lower temperature than the ignition point of the sugar. Boiling the water takes energy and cools the gas inside the cylinder, making it harder for the fuel to ignite.
This isn't an insurmountable problem: you just have to get the cylinder that much hotter to overcome to cooling effect of the water in the mixture. The trick is to design the engine so that the energy used to boil the water can be recovered to help turn the engine. Since the role of the water in the syrup is essentially to vaporize and cool the combustion gasses, the engine has to be designed for a slightly higher volume of slightly cooler gas.
Thinking in terms of modifying an existing engine design, I would think that a diesel engine would be ideal, since it's intended to operate with very high compression and hot cylinders, and fuel which burns as a mist rather than a vapor. Somewhat higher compression (to yield a hot enough gas to ignite the syrup) may be the only change necessary.
One final note: sugar actually is used as a rocket fuel for some model rockets, typically mixed with potassium nitrate (saltpeter), but this is normally done with solid dry sugar, not syrup, since if the mixture has any water in it it becomes difficult to ignite. I did find, however, some YouTube videos of experiments with including sugar syrup in a rocket propellant.
"Dear Santa,
"Please disregard any infractions regarding my behavior this year.
"From, John"
We had thought Scooter, at almost 11 years old, didn't really believe in Santa any more. When Christmas Eve came, however, it looks like he wasn't quite ready to deny Pascal his wager.
We had our first major snowstorm of the season last night, and as I was shoveling the driveway I was thinking about different ways to remove snow.
Okay, I'll be honest--I was trying to figure out how to justify installing a snow-melting system when we have to replace our driveway in a few years. I still shovel the drive by hand, but I can foresee a time when I won't want to do that any more or will be traveling enough so I can't.
There are four basic ways to remove snow and ice from a driveway: shovel it by hand, clear it with a snowblower, melt it with a heated driveway, or hire a snowplow service. (You could look at a fifth possibility, melt it with chemicals, but that would require so much chemicals as to have serious environmental consequences. Chemicals are best used for stubborn patches of ice which are hard to remove mechanically.)
The most obvious way to look at the problem of How to Remove Snow is to compare the energy required to melt snow vs. move it. I measured our driveway and found that it is about 1,200 square feet (I'm going to use English rather than metric units because they're probably more familiar to my readers).
If we get a heavy snowfall of a foot, which translates to an inch of equivalent rainfall (Minnesota's snow tends to have one inch of rainfall equivalent for every 8-15 inches of snow), that's about 6,000 pounds of ice on the driveway which needs to be melted (which will yield about 750 gallons of water, if you're keeping track). It takes 144 BTU to melt a pound of ice, so it will take about 850,000 BTU to melt all the snow.
In addition to melting the snow, you also have to heat the driveway itself. If there's three inches of brick over the 1,200 square foot driveway, that's about 40,000 pounds of brick. In the worst-case scenario, that brick needs to be warmed by about 100 degrees F, which will take about another 900,000 BTU. Normally a snow-melting installation includes a layer of insulation underneath the driveway, so we don't need to heat the ground underneath the driveway. In total, then, we need about 1.75 million BTU to melt a foot of snow from the driveway on a very cold day.
Calculating the energy it takes to move the snow isn't quite as straightforward since it depends on whether you push the snow (with a plow), lift the snow (with a shovel), or launch the snow (with a snowblower). Hard-to-measure factors like friction and ice adhering to the surface can matter a lot. The simplest case is the snowblower, which essentially fires the snow out a chute. If we assume that the snowblower shoots the snow out fast enough to launch it about 30 feet straight up, then it will take about 300 BTU to clear all the snow.
This is a rather lopsided result: it takes about 5,800 times as much energy to melt the snow as to clear it with a snowblower. This is not a helpful result in my quest to justify a snow melting system. It's not the end of the story, though: a snowblower turns out to be much less efficient.
It turns out to be fairly easy to convert chemical energy from natural gas into heat. Our on-demand hot water heater (which would likely be pressed into service to drive any snow-melting system) claims to be 98% efficient, and the required plumbing would have only minimal loss, so over 90% of the energy of the natural gas would be available to heat the driveway. Delivering our 1.75 million BTU to the driveway will require just a little over 1.75 million BTU of natural gas.
Small gasoline engines, like the ones used to drive snowblowers, are not very efficient. Only about 10% of the energy content of the gasoline is actually converted into mechanical energy in the driveshaft of the engine. What's more, the snowblower has a lot of internal friction, idle time, and other losses. It's probably reasonable to assume that only 10% of the output of the engine actually gets converted into flying snow. Realistically, then, it probably takes about 30,000 BTU of gasoline (or about 1/8 of a gallon) to clear the driveway.
Even accounting for the relative efficiency of melting vs. moving snow, it still takes 58 times more energy to melt the snow. This is still not a helpful result, but there's one more wrinkle: a foot of snow on a very cold day is a worst-case scenario for the snow melting system, and melting less snow on a warmer day leads to a direct reduction in the energy required. The snowblower, on the other hand, is likely to use about the same two cups of gasoline no matter how little snow fell or how warm the weather, because most of the energy is going into friction and the important factor is how long it takes to walk the machine across the entire driveway. With only an inch of snow on a warmish sunny day, the snow-melt system might require only 2-3 times as much energy as the snowblower.
Another way to look at the problem is to estimate the amount of fuel consumed by the different ways to remove snow. For our foot of snow, the snow-melt system will consume about 18 therms of natural gas, or about $13 of gas at recent prices from our gas company. The two cups of gasoline the snowblower consumes is about $0.30 of fuel these days.
The amount of gasoline consumed by the snowplowing service is harder to estimate because they likely burn more gas getting to and from our driveway than they use in actually clearing the snow. Plow services tend to drive big four-wheel-drive trucks which get poor mileage (especially with a giant plow rig attached to the front), so it seems reasonable to assume they burn about 1/2 gallon (or $1.20) getting to and from each client on the route.
Finally, when I shovel the driveway by hand, it takes me about an hour and burns 720 calories according to government exercise tables. That's about three candy bars, which cost about a dollar each at the convenience store, so about $3 worth of "fuel" is required.
Here, too, there's a slight wrinkle. Our geothermal system uses waste heat to warm a storage tank for hot water, and this heat could be available for use in a snow-melt system. This could give us the first 25,000 BTU or so for free each time we run the heated driveway--not very helpful for the foot of snow on a subzero day, but a significant factor in the case where we're trying to remove a small amount of snow or ice on a warmer day. This low-use scenario could wind up costing $0.50 or less.
Finally, we can look at the problem from the perspective of how much time and money it takes to clean the driveway. Right now I spend about an hour shoveling the driveway every time we have a significant snowfall, and for bigger storms this sometimes needs to be done twice or more. As already established, this costs about $3 worth of candy bars.
Clearing the driveway with a snowblower takes about a half-hour, and about $0.30 worth of fuel each time. This may seem like a no-brainer (replacing $3 of Snickers with $0.30 of unleaded and taking half the time), but the snowblower itself will cost about $500 and last perhaps five years. If I have to clear the driveway ten times a season, it's clear that buying the snowblower is the most important expense, adding about $10 to the cost of each snowfall.
Hiring a snowplow service is the most expensive option, but it takes me zero time to clear the driveway. We used to hire a service until about 10 years ago, and back then they charged a minimum of $30 every time it snowed with a surcharge for more than three inches of snow. Today it would probably cost $40-$50 for every snowfall, and our foot of snow could cost as much as $75 with surcharges.
The snow-melt system actually starts to look compelling from a time and money perspective. Like the snowplow service, it requires zero effort for snow removal, but the deep snow on a cold day will only cost about $13 in natural gas. I haven't priced the cost of installing the system, but my guess is that it would add between $2,000 and $5,000 to the cost of replacing the driveway (which will have to be done anyway in a few years). Considering that we already have a water heater capable of driving the system, we could well come in at the low end of the range.
The installation price of a snow-melt system is steep, but it should last for the life of the driveway or longer. Over 25 years, the $5,000 spent on the system will cost only $200/year, or $20 for each snowfall if we need it ten times per season. So (rounding off a little), a heavy snowfall will cost about $35 in fuel plus capital expense to melt the snow, as compared to $50-$75 for a plowing service. A light snowfall would cost only about $20 to melt (essentially just the amortized cost of installation), but $40-$50 for a service.
There's no question that moving snow takes much less energy than trying to melt it, and the cheapest, most efficient way to clean up after a snowstorm is to shovel by hand. I'm happy to keep doing this, but She Who Puts Up With Me has zero interest in hand-clearing our driveway.
At some point, I might not want to keep shoveling, or my business travel schedule may make it likely that I won't be in town when the snow flies. When that time comes, we can hire a service, buy a snowblower, or install a snow-melt system.
Buying a snowblower is the cheapest option, but also the least convenient--it will still require someone to spend a half-hour in the cold and blowing snow. I don't think She Who Puts Up With Me will be too excited about this, though it's still better than hand-shoveling.
That leaves hiring a service or going with the heated driveway.
If we have to choose between those options, the snow-melt system is substantially cheaper, as long as we anticipate using the service for a number of years. If we expect to need a service for only a few years (maybe we expect my travel schedule to change, or move to a different house), then the capital expense of the snow-melt system makes it more expensive.
All this is still dreaming at this point: the time to make a decision about a heated driveway is when we replace the driveway. Our current driveway is 25 years old and in poor shape, so it could be replaced at any time. On the other hand, after the geothermal system this year we're not eager to embark on another major home-improvement project for a couple years.
A Northwest flight was in the news recently when it overflew its destination by about 150 miles and the pilots didn't respond to air traffic control. It turned out that the pilots were working on their laptop computers (against airline policy) and got so engrossed that they missed all the attempts to communicate with them.
I don't want to dive into all the hand-wringing over this incident (which ended without damage to anything other than the pilots' professional reputations and credentials). Others far more qualified than I have weighed in on what a terrible lapse of judgement this was.
But this does highlight what I see as potentially an increasing problem in modern aviation: complete and utter boredom.
Over the past 20 years, cockpits have become more and more automated, and modern airliners literally fly themselves with almost no intervention from the crew. Even 4-seat propeller planes of the kind I fly are becoming more automated--it's getting hard to buy a new airplane without a complete digital instrumentation system (aka "glass cockpit") and sophisticated autopilot.
For the most part, this is a good change. Computers are much less likely to make mistakes than people in the routine operations of the aircraft, and can navigate far more precisely. The job of the human pilots is no longer actually flying the airplane, but communicating with the ground and being ready to take over in case something goes wrong (which it almost never does).
The downside is that it leaves the flight crew with very little to do during the cruise phase. If you think it's boring sitting on a 4-hour flight, imagine what it's like for the pilot and co-pilot. They are required to sit in their seats and be alert for hours at a time, but not permitted to sleep, read books, play games, or do much of anything other than talk to each other and (very occasionally) ATC. Even standing up and going to the bathroom is actively discouraged for security reasons.
This sort of enforced inactivity plus alertness is simply not something human beings are good at. The amazing part of this incident is not that the pilots got sucked into some other activity, but that it doesn't happen more often.
In much the same way that JFK was the first TV Age President, it is increasingly clear that Obama is the first Internet Age President.
Kennedy was not the first president to have to deal with television during his presidency, but he was the first one to figure out how to use TV to his political advantage. He knew how to look good on TV, and recognized that this was important. The 1960 Kennedy-Nixon debates, where Kennedy looked presidential and Nixon did not, are considered pivotal in the outcome of the election.
Similarly, Obama is the first President to really know how to use the unique dynamics of politics in the Internet Age to his advantage. Consider this sequence of events, which has played out at least a half-dozen times since the beginning of the presidential campaign two years ago:
I'm not the first one to notice this repeating pattern. Andrew Sullivan calls it the "Rope-a-Dope," and speculates that Obama manages to subtly bait his opponents into Step 1 above. I'm not so sure about the baiting part--not because I think Obama's above baiting his opponents, but because he doesn't seem to need to. For whatever reason, Obama seems to bring out the absolute worst in his critics.
This strategy is perfectly suited to the Internet Age, where any idea, no matter how kooky, can find a sympathetic audience. It plays perfectly into the 24-hour news cycle where the biggest challenge is finding fresh material to report on. It draws strength from partisan media like Fox News and talk radio where there's always a willingness to push negative stories about Obama, no matter how implausible.
Back when most people got their news from the three major networks and a big-city newspaper, many of these wacky stories never would have gotten off the ground because the mass media would have considered them too fringe. Indeed, back in the Kennedy administration, the media wouldn't even report on JFK's well-known affairs, judging it a personal matter between the President and the women in his life. Good luck with that today. Even if the mass media doesn't want to report a story, the Internet and smaller outlets now are big enough to give them the breathing room to grow to the point where the large outlets feel like they can't ignore the story.
So what does it take to be an Internet Age President? In the TV Age, the advice was simple: Look Good on Camera. Nixon failed to do this in 1960 and it cost him the election.
In the Internet Age, the key is to Stay Cool No Matter What. This applies both to the candidate and to his or her campaign and supporters. McCain made a whole series of rash decisions during the 2008 campaign, ranging from suspending his campaign during the financial crisis to choosing Sara Palin as his running mate. It cost him the election.
There will always be kooks and crazies around the margins of politics, and now that they have a bigger voice it's easy to be baited into doing something dumb. Taking the bait achieves nothing but bringing yourself down to their level.
Instead, an Internet Age politician needs to remain visibly above the fray, while looking for opportunities to use the cacophony to his or her own advantage.
It's been three months since our geothermal system was installed. We've made it through the hottest part of the summer, and proved that a heat pump sized for a Minnesota winter does a bang-up job with air conditioning in the summer.
So far we've discovered only one problem: the sinkhole.
When the contractors buried the plumbing for the loop field, they basically excavated a trench about ten feet wide, twenty feet long, and six feet deep. That's about 45 cubic yards of material removed. At the bottom of this pit, they connected the six deep wells to a manifold and a pair of pipes which run under the garage into the utility room. These pipes circulate the antifreeze solution which transfers heat between the ground and the house.
After all the plumbing was done, the geothermal company just pushed the 45 yards of material back into the hole. They made no attempt to level the ground, nor did we expect them to. On the contrary, they made it very clear that they would leave the yard a complete mess and it was our responsibility to fix the landscaping.
A week or so after the geothermal guys left, the landscapers arrived. They used a bobcat to level and grade the ground and plant grass seed on top.
Now, we had a dry spring and summer and for a while things looked pretty good. If you've had experience with excavation, though, you can probably see where this is going.
A certain amount of settling is always expected when you dig a hole and refill it. That's because the granules of dirt, sand, and clay don't just drop back into the same compacted configuration they had been before. Instead, they're fluffed up a little, and it takes some time to unfluff. A good soaking rain helps, since the water suspends and lubricates the particles.
This August, we got that rain. When we got that rain, the ground above the excavation settled. And collapsed into a big sinkhole.
My best guess is that when they pushed all that material back into the hole, they accidentally left a sizable void in one of the corners of the excavation. This is easy to do when the dirt is dry and lumpy like it was this past spring. The void sat there quite happily for a couple months, until we got enough rain to actually soak all the way down to the underground air pocket.
Once the water reached the void, it collapsed and created our sinkhole.
The sinkhole is about a cubic yard in volume, which is to say, big enough to look ugly and alarming, but not big enough to actually be dangerous. Fortunately it's not in a place visible from outside our yard, so I don't feel like it has to be dealt with this instant to keep the neighborhood looking good.
Right now, I'm thinking that the time to deal with the sinkhole will be in the spring, after we've had a complete freeze-thaw cycle and I can be fairly confident that the excavation is mostly done settling. I would hate to fill it all in, just to have it sink again.
If I had thought of it at the time, I should have taken the garden hose and run it into the rough-filled pit the geothermal guys left before the landscapers arrived. That would have at least uncovered the void and prevented the dramatic sinkhole, even if the ground would still have settled after being regraded.
Update: A few hours after I wrote this entry, I discovered that I was a little too sanguine about the need to immediately fill in the sinkholes. The sinkholes are trapping runoff which would normally flow downhill and away from the house, and with heavy enough rain some of the water is making it into our basement. Not much, but enough to make me want to go get a couple yards of sand and rough-grade the sinkholes before the next big storm.
High Speed Rail, which generally means trains running faster than 110 MPH, is hot again these days. There's money in the economic stimulus package, the beginnings of a plan in California, and just this week, a five-part series on National Public Radio.
I am a big fan of the idea. Personally, I would love to be able to hop on a train in Minneapolis and be in Chicago three hours later without the hassle of airports. Or, even better, an overnight sleeper to San Francisco (currently a two-day trip by rail). For me, this would be a service worth paying a premium over an airline ticket, given how miserable air travel is these days.
But....the cost of actually building and operating a single high speed rail line will be substantial; and the cost of building a national network of superfast trains will be astronomical--though no more astronomical than the cost of other national infrastructure like the interstate highway system, power grid, or airspace system.
Fans of fast trains hope that once one regional network is built, the benefits will be so obvious that other regions will demand their own networks, eventually creating a national system. Opponents charge (probably correctly) that high speed passenger rail service will inevitably operate at a loss and require government subsidies (though the highway and airspace systems also require considerable government care and feeding).
Government is good at building gigantic infrastructure projects, but not at figuring out how to make the most efficient use of the infrastructure once built. Competitive markets, on the other hand, are great at figuring out what customers want, but no private enterprise could possibly afford to build a high speed rail network--and forget about the idea of two competing sets of tracks.
My idea is to have government build and maintain the high speed rail lines, but private companies own and operate the trains. Any company which could meet appropriate technical requirements would be allowed to operate high speed trains and pay a fee for the privilege.
This is similar to the way the highways and airspace systems work today, where government builds and maintains the infrastructure but private companies set schedules, pricing, and routes. It's almost the exact opposite of how Amtrak currently works, since Amtrak has a quasi-governmental monopoly on interstate passenger rail, but has to negotiate with private companies to use most of the tracks its trains run on.
There would be technical issues to work out--for example, traffic control, and how to allocate the most desirable time slots on heavily-traveled routes. But we have decades of experience solving similar problems in the national airspace system.
In exchange for solving these (minor) issues, a high-speed rail system would gain several advantages:
Personally, I've never understood why railroads have to own and maintain their own tracks. The public-private hybrid we use for other transportation modes seems to work much better, and were it not for the historical accident of how the railroads were built in the first place 150 years ago, I don't see why anyone would follow that model today.
Scooter, my oldest son, is the kind of person who just has to know what will happen when he throws a rock at a wasps' nest.
Then, he needs to repeat the experiment to make sure the same thing happens each time.
August is the time of year when the wasps' nests get to be about football size and utterly irresistible as a target for small thrown objects. Last summer, there was one in the crabapple tree in the front yard, about six feet off the ground. Scooter got stung a couple of times, and his face swelled up for days after. Nevertheless, the next day he was at it again, chucking rocks and sticks despite the painful lesson of the day before.
The wasps are generally beneficial since they eat all kinds of damaging bugs and caterpillars, so I prefer a "live and let live" strategy when dealing with them. When they get too close to where the kids are playing, however, something has to give. Once discovered, the kids can't be trusted to leave the nest alone, and I don't want to have them scared to play in our own yard.
Last summer, we were fortunate to have a run of cool weather, so I was able to cut down the nest on a 50-degree morning (they have trouble flying when it gets that cool). Within hours, some other critter had discovered the tasty morsels inside and ripped the nest apart to eat the wasps and their larvae.
This year, the kids discovered a nest in a tree near their new tree-fort. It's not clear whether Scooter intentionally threw stuff at it, or just happened to hit the nest when chucking things at his brother, but either way the wasps got good and angry. Scooter go stung about a half-dozen times during his mad dash to the house, while one of his brothers was smart enough to retreat before being stung at all.
The other twin, however, was in the treehouse and got pinned down by angry wasps. The poor kid was stuck for several minutes while the insects repeatedly stung him. I tried to get to him to help, but inadvertently walked right under the nest and got chased away when I got stung 8-10 times in just a few seconds. I also lost my glasses in the yard and have yet to find them.
My son did manage to climb safely down and run to the house, leaving his shoes behind. For several hours, wasps were seen harassing the abandoned shoes, apparently thinking that they represented a continued threat. Needless to say, this nest cannot remain.
This nest is much higher up than the one from last summer, and the weather looks unlikely to get down to 50 for several weeks. So this evening I plan to empty a can of insecticide into the nest and once again remind all three kids that when you see a wasps' nest, leave it alone.
I've been riding my recumbent trike (aka The Dorkmobile) for a little over a year and 1,500 miles now, and even convinced my brother to buy one.
Lately I've noticed more and more recumbents, including trikes, on the roads and trails. So in case you're thinking of riding one, here are some of my experiences so far.
Riding a recumbent trike is surprisingly different from a traditional bike, and takes some getting used to. You are low to the ground, don't lean into turns the same way, and use different muscles to pedal.
I like to describe it as pedaling a lawn chair, though the sensation of motion is more like a go-cart than anything else. If you're transitioning from a traditional bike, expect it to feel weird for the first hundred miles or so. You will have to learn to brake evenly with both hands (to avoid brake steer), and going really fast (30+MPH) feels unstable at first even though it isn't.
The biggest advantage of the trike is comfort. I can ride all day with no ill effects other than a little muscle soreness; on a traditional bike, my shoulders, wrists, and butt would be killing me after just a few miles.
I also find the trike a lot more fun than a regular bike. The low-to-the-ground position gives a great impression of speed, and the machine is unusual enough to get regular comments (and compliments) on the trail.
Between the comfort and the fun, I find that I'm riding a lot more on the trike than I ever rode my bike. I never tracked my bike riding very closely, but the 1,500 trike miles in the past year is probably close to my entire lifetime bike miles.
I didn't appreciate this until after a thousand miles or so, but adding a third wheel at least doubles the mechanical complexity of a trike over a traditional bike. Two front wheels means that steering is accomplished through a bunch of mechanical linkages; and the very long chainline means extra gears and the opportunity for the chain to oscillate wildly if it isn't tensioned properly.
The trike also has a much bigger footprint than a bike, which makes it harder to store and transport. There are few trike racks made for cars, so I've usually wound up strapping it to the roof (which works really well as long as you only need to carry one trike). It takes up the space of two or three bicycles in the garage.
The third wheel also adds some drag, so the trike will not be quite as fast as a bicycle. If you care about speed, this is probably not for you.
A trike has many of the same safety considerations as a bicycle, but also some differences. Just as with a bike, when riding on roads visibility to cars is a really big deal. Big flags and lots of flashing lights are a good idea. I have a flashing light mounted on my flag pole, which puts it near eye level for drivers. I've not had much difficult being seen.
Another issue is that with the low posture of a trike, sometimes seeing around cars is a problem--for example, when I'm stopped at an intersection and a car pulls up next to me a little too far. On a traditional bike, I would be able to see over the car's hood, but on my trike my eye level is about at the top of the car's wheel. This isn't normally a safety issue, since the car usually knows I'm there, but it is annoying because I can't go until the car stop blocking my view.
The trike does have a huge safety advantage when it comes to stability. Three wheels and a low center of gravity means that a trike is very hard to flip, whereas a bike can wipeout on even a small patch of slippery or loose ground. If you do flip, there isn't very far to fall. I've flipped my trike twice, and both were essentially non-events: get up, brush myself off, and continue.
(In case you're wondering, the recipe for flipping a trike is to turn from a road onto a sidewalk carelessly. If you take the turn too fast and cut the inside of the corner, the inside front wheel will bump up on the curb and your momentum will flip you right onto your side.)
A recumbent trike is not for everyone. It is more expensive and someone more maintenance-prone, and also a little slower than a bike.
But for me, it has been worth it. I ride a lot more often, and a lot further, than I ever did on a bike, just because it is so much fun. If you're thinking about a trike, I suggest that you give it a good long test ride. If you're grinning so much that you have to pick the bugs out of your teeth afterwards, then there's your answer.
I crossed 500 miles under pedal power in 2009 not long ago, as well as logging a week over 100 miles. That's a nice milestone on the way to my goal for the year of 2,000 miles, but I'm starting to think that might be a bit out of reach.
Last year I logged about 900 miles but that was a partial season since I didn't get the trike until mid-June. I figured that with diligence, I should be able to double that number for 2009 (hence the 2,000 mile goal), but I didn't consider the cumulative effects of vacations, wacky summer schedules, and some downtime for mechanical problems.
Sadly, the weather this week is supposed to be absolutely perfect for trike-riding, but the kids' summer schedules are probably going to limit the number of days I can actually ride to work. We're in the crazy part of the summer now, when all three kids have one summer program or another and we have to drive them all over creation every day.
Our new geothermal heat pump system is installed and operational (you can read about our initial research, and the decision to go ahead). All that remains at this point is to clean up the mess.
We have replaced our traditional furnaces, air conditioners, and water heater with a new system consisting of two geothermal heat pumps, a backup gas-fired furnace, a hot water storage tank, and a gas-fired on-demand hot water heater. The geothermal heat pumps both heat and cool the house using the soil under our yard as a gigantic heat sink (which is several times as efficient as a traditional furnace or air conditioner), and use waste heat to heat the water in the hot water storage tank. The on-demand hot water heater kicks in if the water in the tank isn't hot enough, and the gas-fired backup furnace is used on really cold days or when the power company turns off the heat pumps to manage the power grid in the winter.
Recall that there are three financial incentives for installing this system:
Of these, the $150/ton geothermal rebate from Xcel is relatively small (heat pump capacity, like air conditioner capacity, is measured in "tons." Our system is six tons total). The dual-fuel rate is the one which really makes the system work financially, since that makes the geothermal significantly cheaper to operate than natural gas, even in years when natural gas is cheap.
We calculated that, given the cost of replacing our old furnaces (which had to be done anyway) and taking advantage of all the financial incentives, the geothermal system would pay for itself in about nine years. That's not bad, considering that the heat pumps have a ten-year warranty and the loop field (the underground heat exchange wells which account for about half the project cost) should last pretty much forever.
Shortly after we committed to the project and paid for 50% of the system up front, we heard from our tax advisors that we might not actually be able to take advantage of the full geothermal tax credit. The problem is that the tax credit is nonrefundable, meaning that if it reduces your tax liability below zero then you don't get the difference back. At the time we were planning the system, it was still unclear if the credit would be refundable or not; and now that it's not, we don't know if we will have enough tax liability in 2009 to get the full value of the incentive.
We re-ran the numbers without the federal tax credit, and it turns out that without it the system will pay for itself in 18 years instead of nine. That's not great, but it's not terrible either, especially considering the nonfinancial benefits (helping the environment, etc.).
The system we had installed is one of the more complicated (and therefore more expensive) residential geothermal systems out there. We had to work around two major limitations in our home: an addition with a completely separate furnace and air conditioner (and no practical way to tie the ductwork together into a single system), and a relatively cramped utility room. Our system consists of:
Together, all this gear replaces everything which had been in our mechanical room except the water softener. It looks like the inside of Captain Nemo's submarine.
The project took about two weeks to complete, though 90% of the work was finished in the first week. Drilling the loop field and replacing our old mechanical systems happened in parallel, with our new hot water heater and gas backup furnace operational after the first full day of work. This meant that we wouldn't have to be without heat or hot water, though fortunately the weather has been nice enough that the heat hasn't been necessary.
In order to be fully operational, after the equipment was in place and the loop field completed, the loop field had to be connected to the heat pumps and filled (it took about 125 gallons of an antifreeze mixture. I'm told this fluid should never have to be replaced, unless the system has to be drained for some reason). Then we had to wait for Xcel Energy to install a second electric meter, since the "dual fuel" rate requires that the geothermal system be separately metered from the rest of the house.
Once all that was done, we ran into a series of minor problems: the wrong part for a control relay, a burned out switch, and finally, after everything was running properly, the technicians accidentally left one of the heat pumps in a test mode, requiring another visit to reset it for normal functioning.
All told, the installation went about as well as can be expected for a project of this magnitude.
The weather has been very pleasant lately, and we haven't used our new system much yet. It was a little cool the first evening the geothermal was on, so we ran it for a few hours to take the chill off.
Some things take getting used to in transitioning from traditional heat and air conditioning to geothermal. The biggest change is that unlike a gas furnace, which normally cycles on and off, a geothermal system is most efficient when it operates continuously in its lowest stage.
That means that it no longer makes sense to turn the heat down at night and when we're not at home during the day. We had saved a significant amount on our heating bill by turning the heat way down at night, but now that strategy will actually cost us money by forcing the geothermal system to run in a less efficient mode to catch up--or worse, the system might switch to the gas backup furnace, negating the efficiency of geothermal entirely.
Getting the most out of geothermal will mean making only very gradual changes to the temperature in the house. The name of the game is to try to keep it running in the lowest stage possible, and avoid running the gas backup at all. We'll have to experiment with it when we get into the next heating season to see what works, but I'm guessing that we can turn down the heat modestly during the work week, as long as we are careful to raise it only gradually on the weekend. The wood stove will be helpful, since it will give us a way to add more heating capacity without losing the benefit of the geothermal.
Our trusty Braun coffee maker (a wedding present from almost 16 years ago) recently died. I wanted to replace it with something which wouldn't die on us after a year or two, so the cheap $20 Mr. Coffee from Target was out.
I've heard people rave about vacuum extraction coffee makers, so I decided to investigate....and bit. For $75 (including shipping from Amazon), I picked up a Bodum Santos 34-ounce vacuum extraction coffee maker.
This is an entirely different way of making coffee from the usual automatic drip. There are two chambers, a lower one which you fill with water, and an upper one filled with coffee grounds. You boil the water in the lower chamber, which forces it up through a tube into the upper chamber where the hot water and grounds mix. Then you remove it from the heat, and as the steam in the lower chamber cools it sucks the coffee back into the lower chamber through a filter.
As soon as I got the box this afternoon, I brewed a pot of decaf (it being past my usual hour for stimulants). Following the advice of many people online, I preheated the water in the microwave to save time on the stove (a good idea). And by golly, even though I don't consider myself a coffee geek, I really can taste the difference from our old drip coffee maker. It has a much stronger coffee flavor with less bitterness.
Plus, it's fun to watch.
So the scorecard for the vacuum extraction coffee maker is:
Advantages:
Disadvantages:
The cul-de-sac we live on has about a dozen homes, and it's an amazingly stable neighborhood. More that half the homes have been owned by the same people for ten years or longer. Two or three of the houses are still in the hands of the original owners (most of the houses having been built about 25 years ago).
For the past two years, there has been at least one house for sale at all times, and for several months during 2008 there were three houses on the market at the same time. It used to be something of a rarity to have even one house on the market, and the last time there were two for sale at once was 12 years ago, when we bought ours.
This weekend, the last house on our block sold. For the first time in a couple years, there are no houses for sale on our block.
Today's Sunday paper was the thickest I can recall since Thanksgiving. Since most of the heft of the Sunday paper is advertising supplements and circulars, this is a strong indication that advertisers are coming back.
Target took out a huge full-color spread in the middle of the A-section, at least four full pages and maybe more.
This is an especially good sign given how hard newspapers have been hit in this downturn. If advertising dollars are truly up, it comes not a moment too soon for them.
I've noticed in the past few weeks that morning rush hour traffic has been getting worse.
Now, my commute is not very long (less than ten miles), and the traffic on the particular highways I drive has never been that bad to begin with. If traffic jams really are getting worse generally (and not just for me), then this is a sign of an improving economy. More traffic at rush hour means more people going to jobs, which means more people employed.
Today I reached 200 miles on my trike for 2009. The goal is 2,000 miles for the year, so I'm 10% of the way there.
2,000 miles will be a push, so making this milestone by the end of April is a good start.
We've had a couple of months to investigate installing a geothermal heat pump system for our home, and now it's Decision Time.
This whole process started back in January when our old, conventional furnace went kaput on one of the coldest nights of the year. It was past its expected life expectancy, so we started researching geothermal. A geothermal heat pump uses the ground under the house as a gigantic heat sink, pumping heat underground in the summer (when the air conditioning runs), and pumping heat out in the winter (when it acts as a furnace). This takes considerably less energy than conventional heating and cooling.
Financially speaking, a geothermal system costs more upfront, but less to operate. The payback time is long enough that most people would be (understandably) reluctant to install one without some sort of financial incentive. Fortunately, there are incentives aplenty:
Going into this process, we were helped by the fact that my parents installed a geothermal system a little over a year ago. They've been generally happy with it, but had some issues (more on that later), and they were able to provide some hard numbers. We figured it would cost about $25,000 to replace our furnace.
We identified several local geothermal contractors and invited them to our home to inspect the existing system and offer ideas and bids. The contractors we did invite represented a cross-section of major heat pump brands, and all passed our initial screen of good histories on Angie's List. We did not talk to the installer my parents hired, after hearing some of their negative comments and seeing other customers' complaints.
Our home presents a couple of unique problems for this installation. First, we actually have two furnaces, separated by about 30 feet. One is for the main part of the house, and the other is for an addition built before we moved in. Ideally, we would want to replace both units with a single heat pump and tie the ductwork together, since a second heat pump adds considerable cost to the system. There also isn't very much room around either of the existing furnaces for new equipment, making it difficult to find room for a conventional gas backup furnace (and without that special electric rate, the numbers don't make sense).
None of the contractors we spoke to thought it was feasible to put in only a single heat pump to replace the two furnaces: there just is not enough room to run the needed ductwork without cutting through bearing walls.
The space constraints also knocked out one of the manufacturers, which simply didn't have any way to give us both the heat pump and the gas backup in the space we have available.
We settled on a system from a local WaterFurnace contractor with many years of experience, and which could show us examples of how they'd handled similar problems for other customers. The total cost will be about $40,000, and this will include two heat pumps, a natural gas backup furnace, a hot water holding tank, a desuperheater to use waste geothermal heat to preheat domestic hot water, and a whole-house on demand gas water heater. The cost is split approximately one-third for equipment, one-third for drilling the geothermal wells, and one-third for installation and other components.
This will be a six ton system total (heat pumps, like air conditioners, are measured in "tons" of capacity), with four tons serving the main part of the house, and two tons serving the addition. Only the main part of the house will get the backup gas furnace, but that will be sufficient to keep the addition warm (though not totally toasty).
Given that the total cost will be so much higher than we expected, we went back and did a more careful analysis of the payback. Working in our favor is that we are also getting a new water heater in the bargain (which we would probably need in a few years anyway), so we can count the avoided cost of a new water heater towards the geothermal system.
After figuring out the various rebates and backing out the cost of two new furnaces, two air conditioners, and a new water heater, we estimate that the geothermal system will cost about $11,000 more than replacing everything with the conventional equivalents (after rebates). It will save us about $900/year in heating costs, and $250/year in hot water (since the hot water will be essentially "free" when the geothermal system is running), and pay for itself in ten years.
I didn't figure in any air conditioning savings, since last summer we barely ran our A/C at all. However, if we do have a hot summer, the savings will increase very quickly because the efficiency improvement for geothermal air conditioning is even more dramatic than for geothermal heat. This could easily be hundreds of dollars more in savings.
So the numbers still make sense--the system will pay for itself before the warranty runs out.
That said, this will be a financial strain. First, we have to pay for the whole system in one big lump, whereas if we were to replace our furnaces, hot water heater, etc., as they failed, we would be spreading the cost out over several years. Second, we don't get the federal rebate (well over $10,000) until we get our 2009 tax refund sometime in 2010. That means that it will be over a year between the time we spend the money and when we get that part of the money back.
Finally, the $40,000 number doesn't include relandscaping the front yard. Drilling the wells will leave the yard a mess, and we're going to have to spend some money getting it repaired and cleaned up. We had been planning to do a some significant landscaping within the next few years, so this will also get moved up to this spring.
Part of making the numbers work is making sure we actually can claim all the rebates and incentives for this project. My parents discovered this the hard way, when they went to do their 2008 taxes and learned that the model of heat pump they installed wasn't EnergyStar rated and therefore not eligible for the federal rebate. The rebate in 2008 was limited to $3,000, so they weren't counting on it to the same extent that we are, but it was a rude surprise nevertheless and a warning for our project.
I've verified that both of the heat pumps we'll be installing qualify for the federal rebate, but we still need to contact Excel and make sure we have all our ducks in a row for both of their programs.
I also expect that there will be some as-yet-unknown gotchas. We don't yet know where all our utility lines are, so we don't know where the wells can be drilled and where the connection to the house will have to go. There's the chance that something will turn out to be unsuitable and put the kabosh on the whole project.
If all goes well we'll probably have our new system installed by the end of May. We need to get a permit for drilling the wells, and plan where everything will go. Drilling will be in early May, with the mechanicals shortly thereafter.